Supplementary Materials for "Reactive Learning: Active Learning with Relabeling"

1 Theorem 1

Proof. We first show that the theorem is true when \mathcal{X}_L only contains singly-labeled examples. $\mathrm{US}_\mathcal{X}^\alpha$ will always pick an unlabeled example x_u over a singly-labeled example x_l , if α is set such that $(1-\alpha)M_A(x_l)+\alpha M_L(x_l)<(1-\alpha)M_A(x_u)+\alpha M_L(x_u)$ for all x_l, x_u pairs. This condition holds true when $\alpha>\frac{M_A(x_l)-M_A(x_u)}{M_A(x_l)-M_A(x_u)+M_L(x_u)-M_L(x_l)}$ for all x_l, x_u pairs. We set $\alpha'=\sup_{x_l\in\mathcal{X}_L,x_u\in\mathcal{X}_L}\frac{0.69}{0.69+(M_L(x_u)-M_L(x_l))}$. Note that since x_l is singly-labeled and will have label entropy compared to x_u , which is unlabeled, $M_L(x_u)>M_L(x_l)$. Therefore, $\alpha'<1.0$. Also, since M_A is an entropy of a binary random variable, $|M_A(x_l)-M_A(x_u)|<0.69$. Combining all these facts, the condition holds true when $\alpha>\alpha'>\frac{0.69}{0.69+(M_L(x_u)-M_L(x_l))}$ for all x_l, x_u and $\alpha<\frac{0.69}{0.69-(M_L(x_u)-M_L(x_l))}>1.0$ for all x_l, x_u . Since all unlabeled examples have the same label uncertainty and because $\mathrm{US}_\mathcal{X}^\alpha$ always picks an unlabeled example, the example it picks will be determined based on the classifier's uncertainty, just as in $\mathrm{US}_{\mathcal{X}_U}$. Now, since both $\mathrm{US}_\mathcal{X}^\alpha$ and $\mathrm{US}_{\mathcal{X}_U}$ start with $\mathcal{X}_L=\emptyset$, by induction, \mathcal{X}_L will only ever contain singly-labeled examples, and so these two strategies are equivalent. \square

2 Theorem 2

Let $P_{\mathcal{A}}(h^*(x_i)=y)$ denote the probability currently output by learning algorithm, \mathcal{A} , that $h^*(x_i)=y$. For ease of notation and clarity, we denote with shorthand $p_0(x_i)=P_{\mathcal{A}}(h^*(x_i)=0)$ and $p_1(x_i)=P_{\mathcal{A}}(h^*(x_i)=1)$. Because we are considering a setting with no noise, the total expected impact of a point x_i is $\sum_{y\in\mathcal{Y}}p_y(x_i)\psi_y(x_i)$.

Lemma 1. If

1.
$$(\psi_1(x_i) - \psi_0(x_i)) \ge \frac{\psi_0(x_j) - \psi_0(x_i) + (\psi_1(x_j) - \psi_0(x_j))p_1(x_j)}{p_1(x_i)}$$
, or

2.
$$(\psi_0(x_i) - \psi_1(x_i)) \ge \frac{\psi_1(x_j) - \psi_1(x_i) + (\psi_0(x_j) - \psi_1(x_j))p_0(x_j)}{p_0(x_i)}$$
, or

3.
$$(\psi_0(x_i) - \psi_1(x_i)) \ge \frac{\psi_0(x_j) - \psi_1(x_i) + (\psi_1(x_j) - \psi_0(x_j))p_1(x_j)}{p_0(x_i)}$$
, or

4.
$$(\psi_1(x_i) - \psi_0(x_i)) \ge \frac{\psi_1(x_j) - \psi_0(x_i) + (\psi_0(x_j) - \psi_1(x_j))p_0(x_j)}{p_1(x_i)}$$
,

then, the total expected impact of x_i is at least as large as that of x_j : $\sum_{y \in \mathcal{V}} p_y(x_i) \psi_y(x_i) \geq$ $\sum_{y \in \mathcal{V}} p_y(x_j) \psi_y(x_j).$

Proof. For condition (1), we have that $\sum_{y \in \mathcal{Y}} p_y(x_i) \psi_y(x_i)$

$$= p_0(x_i)\psi_0(x_i) + p_1(x_i)\psi_1(x_i)$$

$$= p_1(x_i)(\psi_1(x_i) - \psi_0(x_i)) + \psi_0(x_i)$$

$$\geq p_1(x_i)\frac{\psi_0(x_j) - \psi_0(x_i) + (\psi_1(x_j) - \psi_0(x_j))p_1(x_j)}{p_1(x_i)} + \psi_0(x_i)$$

$$= \psi_0(x_j) - \psi_0(x_i) + (\psi_1(x_j) - \psi_0(x_j))p_1(x_j) + \psi_0(x_i)$$

$$= \psi_0(x_j) + (\psi_1(x_j) - \psi_0(x_j))p_1(x_j)$$

$$= \sum_{y \in \mathcal{Y}} p_y(x_j)\psi_y(x_j).$$

Proofs of conditions (2-4) proceed similarly.

2.1 **Proof of Theorem 2**

Proof. Let x_i be the point chosen by uncertainty sampling. We prove the theorem by showing that \mathcal{P} satisfies the conditions of Lemma 1 for x_i and all candidate points x_i . We prove the case when $x_i > t$ and $x_j > t$ (then $x_j > x_i$, because otherwise x_i would not have been picked by uncertainty sampling). The 3 other cases proceed in exactly the same manner, because of symmetry. Let us also assume that $x_i < x_{<}$, because if not, the theorem holds trivially, because all points will have 0 impact. Let t be the currently learned threshold, $x = \max\{x \in \mathcal{X}_L : x < t\}$ denote the current greatest labeled example less than the threshold, and $x = \min\{x \in \mathcal{X}_L : x > t\}$ denote the current smallest labeled example greater than the threshold. Now we define $d_{*1,*2}$ to be the proportion of points in \mathcal{X} between points $*_1$ and $*_2$. Precisely,

$$d_{*_{1},*_{2}} = P_{x \in \mathcal{D}}(x \in \{x : *_{1} < x < *_{2}\}).$$

For example, $d_{x_{<},t}$ is the proportion of points between $x_{<}$ and t. We also know that $d_{x_j,t} \geq d_{x_i,t} \text{ because } x_j > x_i. \text{ Now we show that condition 1 of Lemma 1 is satisfied,}$ that $(\psi_0(x_i) - \psi_1(x_i)) \geq \frac{\psi_0(x_j) - \psi_0(x_i) + (\psi_1(x_j) - \psi_0(x_j))p_1(x_j)}{p_1(x_i)} \text{ for all } x_j > x_i$ We have that for any $x_j, \psi_0(x_j) = d_{t,x_j} + \frac{d_{x_j,x_j}}{2} \text{ and } \psi_1(x_j) = d_{x_{<,x_j}} - (\frac{d_{x_{<,x_j}}}{2} + \frac{d_{x_j,x_j}}{2}) + \frac{d_{x_j,x_j}}{2} + \frac{d_{x_j,x_j$

 d_{t,x_i}). Therefore, $\psi_1(x_j) - \psi_0(x_j)$

$$\begin{split} &=d_{x<,x_{j}}-(\frac{d_{x<,x_{j}}}{2}+d_{t,x_{j}}))-(d_{t,x_{j}}+\frac{d_{x_{j},x_{>}}}{2})\\ &=d_{x<,t}-\frac{d_{x<,x_{j}}}{2}-\frac{d_{x_{j},x_{>}}}{2}-d_{t,x_{j}}\\ &=d_{x<,t}-d_{d<,t}-d_{t,x_{j}}\\ &=-d_{t,x_{j}}. \end{split}$$

Next, we have that $\frac{\psi_0(x_j) - \psi_0(x_i) + (\psi_1(x_j) - \psi_0(x_j))p_1(x_j)}{p_1(x_i)}$

$$= \frac{d_{t,x_j} + \frac{d_{x_j,x_j}}{2} - (d_{t,x_i} + \frac{d_{x_i,x_j}}{2}) - d_{t,x_j} p_1(x_j)}{p_1(x_i)}$$

$$= \frac{d_{x_i,x_j} - 0.5(d_{x_i,x_j}) - d_{t,x_j} p_1(x_j)}{p_1(x_i)}$$

$$= \frac{0.5d_{x_i,x_j} - d_{t,x_j} p_1(x_j)}{p_1(x_i)}.$$

And then,

$$\begin{aligned} \frac{0.5d_{x_{i},x_{j}}-d_{t,x_{j}}p_{1}(x_{j})}{p_{1}(x_{i})} & \leq -d_{t,x_{i}} = (\psi_{1}(x_{i})-\psi_{0}(x_{j})) \\ & \qquad \qquad \updownarrow \\ 0.5d_{x_{i},x_{j}}-d_{t,x_{j}}p_{1}(x_{j}) & \leq -d_{t,x_{i}}p_{1}(x_{i}) \\ & \qquad \qquad \updownarrow \\ 0.5d_{x_{i},x_{j}} & \leq d_{t,x_{j}}p_{1}(x_{j})-d_{t,x_{i}}p_{1}(x_{i}) \\ & \qquad \qquad \updownarrow \\ 0.5d_{x_{i},x_{j}} & \leq d_{t,x_{j}}[p_{1}(x_{i})+\beta]-d_{t,x_{i}}p_{1}(x_{i}), \quad \beta = p_{1}(x_{j})-p_{1}(x_{i}) \\ & \qquad \qquad \updownarrow \\ 0.5d_{x_{i},x_{j}} & \leq p_{1}(x_{i})d_{x_{i},x_{j}}+\beta d_{t,x_{j}}, \quad \beta = p_{1}(x_{j})-p_{1}(x_{i}) \end{aligned}$$

 $\beta>0$ because $x_j>x_i$, and $p_1(x_i)>0.5$ because $x_i>t$, and therefore $0.5d_{x_i,x_j}\leq p_1(x_i)d_{x_i,x_j}+\beta d_{t,x_j}$, and the theorem is proved.