Supplementary Materials for “Reactive Learning:
Active Learning with Relabeling”

1 Theorem 1

Proof. We first show that the theorem is true when X7, only contains singly-labeled ex-
amples. US$ will always pick an unlabeled example z,, over a singly-labeled example

xy, if avis set such that (1 — o) Mg (x;) +aMp(x) < (1—a)Ma(zy) +aM(z,) for

all 2, z, pairs. This condition holds true when & > 37— ;\\44:((:1)) fff; ((i“)) YeRen)

for all @7, 2, pairs. We set o' = sup,,cx, +. cx, o 69+(ML(:IU) PR Note that
since x; is singly-labeled and will have lower label entropy compared to z,,, which
is unlabeled, My (z,) > My(x;). Therefore, o’ < 1.0. Also, since M4 is an en-
tropy of a binary random variable, |Ma(z;) — Ma(z,)| < 0 69 Combining all these

facts, the condition holds true when o > o' > o 69+(ML(xu) YPen)) for all z;, x,,
0.69

and a < 069= (ML (3) ML (@) > 1.0 for all x;,x,. Since all unlabeled examples
have the same label uncertainty and because US$ always picks an unlabeled example,
the example it picks will be determined based on the classifier’s uncertainty, just as in
USx,, - Now, since both US%, and US y,, start with X, = (), by induction, X7, will only
ever contain singly-labeled examples, and so these two strategies are equivalent. [

2 Theorem 2

Let P4(h*(z;) = y) denote the probability currently output by learning algorithm, A,
that h*(x;) = y. For ease of notation and clarity, we denote with shorthand po(x;) =
Pa(h*(x;) = 0) and p1(x;) = Pg(h*(x;) = 1). Because we are considering a setting
with no noise, the total expected impact of a point x; is }, oy, Py i)y (25).

Lemma 1. If

1. (1 (x) — wolzs)) > o (5)—vYo(xs)+ (1 (z;)—vo(x;))p1(z;) or

p1(2i)

2. (wo(fﬂz)—%(mz)) > P1(x;) =1 (wi)+ (o (x;) =1 (z;))po(xs) L or

PO(Il)

3 (¢0(1’z) —¢1($i)) > Yo (zj) =1 (zi)+ (W1 (z;)—po(x;))p1(z;) or

po(zi)

4. (1 (z:) — vol(zy)) > 1 (z5)—vo(x:)+ (o (z;) =1 (x;))po(z;)

p1(xi)



then, the total expected impact of v is at least as large as that of Tj: 32, <y Py (T:)y () >

Zyey pu(%)wy(%)
Proof. For condition (1), we have that )y, py(:)ty (%)

= po(®i)Yo(x:) + p1(xi)1(z:)

= p1(z:) (Y1 (wi) — o(x:)) + o(z:)

> pl(xi)%(xj) — o (x;) +]§i/21x(f§j) — to(x;))p1(z;) + o)
= Yo(z;) — o(xi) + (Y1(;) — Yo(z;))p1(2;) + Po(z:)

= Yo(x;) + (Y1(z;) — Yo(x;))p1(;)

= Zpy(xg)illy(%)

yey

Proofs of conditions (2-4) proceed similarly. O

2.1 Proof of Theorem 2

Proof. Let x; be the point chosen by uncertainty sampling. We prove the theorem by
showing that P satisfies the conditions of Lemma 1 for x; and all candidate points x ;.
We prove the case when z; > t and z; > t (then x; > x;, because otherwise x; would
not have been picked by uncertainty sampling). The 3 other cases proceed in exactly
the same manner, because of symmetry. Let us also assume that z; < x., because
if not, the theorem holds trivially, because all points will have 0 impact. Let ¢ be the
currently learned threshold, . = max{x € XL : © < t} denote the current greatest
labeled example less than the threshold, and x>~ = min{z € X : > t} denote the
current smallest labeled example greater than the threshold. Now we define d., «, to
be the proportion of points in X between points *; and *5. Precisely,

iy sy = Prep(r € {71 %1 < < %2}).

For example, d,_ ; is the proportion of points between x and t. We also know that
dy;t > dy, ¢ because T; > ;. Now we show that condition 1 of Lemma 1 is satisfied,

that (¢o(z:) — 1 (z:)) > wo(zj)fwo(mi)%:ﬁ;ﬁFwo(xj))pl(zj) forall z; > x;
d

We have that for any x;, 9o (2;) = d¢ 2, + drg“ and 1 (25) = dp_ o, — (—5
dt,z; ). Therefore, 11 (x;) — to(x;)

d{L’ s j dzj,x
= dl’<79€j - (<T + dt@j)) - (dtJJj + 2 - )
d dy. »
=y T e g,
- d:v<,t - dd<,t - dt,mj
= 7dt,.’Ej'



(z5) =0 (zi)+ (@1 (z;)—vo(z;))p1(z;)
p1(w:)

Next, we have that Yo

Ay x de, o
iy, + =5 = (e, + —5) — dia,pi (@)

p1(wi)
duy oy — 0.5(day ;) — di o1 ()
p1(z;)
0.5dy; 2; — di,z;P1 ()
p1(z:) '

And then,

O.Bdmi,a:j —d ] ]
pl(x; pi(z;) < —dyp, = (V1(x;) — Yo(xj))

(i
0~5dxi,mj - dt,xjpl(xj) S _dt,xipl(mi)
(i

O-5da:i,$j < dt,szl (-73]) - dt,mipl (xz)

)

0.5dg; 2, < di o, [p1(x) + B] — di o, p1(2:), B = p1(z;) — p1(;)

)

0'5d$1‘,l’j S pl(mz)dw“wj + Bdt,1j7 B = pl(l‘]) _pl(xl)

B > 0 because x; > x;, and pi(x;) > 0.5 because x; > ¢, and therefore

0.5dz; 2; < p1(2i)dz; o, + Bdt z;, and the theorem is proved.
O
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